Welcome to MINDS!
Established in 2020, POSTECH Mathematical Institute for Data Science (MINDS) is the community of researchers in the areas of fundamental data science, machine learning, artificial intelligence, scientific computing, and humanitarian data science. MINDS mission is to provide a platform for collaboration among researchers and to provide various opportunities for students in data science. MINDS also aims to use our data science research to serve our local and global communities pursuing humanitarian data science.
News
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023.11.30
3nd POSTECH&Peking SIAM Student Chapter Joint Conference
2023.11.01
2023 PSSC Summer Camp
2023.10.04
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]-상시모집
2023.07.25
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.07.14
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구교수 채용 공고]
2023.06.12
Seminar | Joint seminar for probability and mathematical biology
2023.05.02
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.02.15
Upcoming Events
Schedule
MINDS SEMINAR
MINDS Seminar Series | Il Youp Kwak (Chung Ang University) - Low-quality Fake Audio Detection through Frequency Feature Masking
MINDS SEMINAR
period : 2022-11-01 ~ 2022-11-01
time : 17:00:00 ~ 18:00
개최 장소 : Online streaming (Zoom)
Topic : Low-quality Fake Audio Detection through Frequency Feature Masking
개요
Date | 2022-11-01 ~ 2022-11-01 | Time | 17:00:00 ~ 18:00 |
Speaker | Il Youp Kwak | Affiliation | Chung Ang University |
Place | Online streaming (Zoom) | Streaming link | ID : 688 896 1076 / PW : 54321 |
Topic | Low-quality Fake Audio Detection through Frequency Feature Masking | ||
Contents | The first Audio Deep Synthesis Detection Challenge (ADD 2022) competition was held which dealt with audio deepfake detection, audio deep synthesis, audio fake game, and adversarial attacks. Our team participated in track 1, classifying bona fide and fake utterances in noisy environments. Through exploratory data analysis, we found that noisy signals appear in similar frequency bands for given voice samples. If a model is trained to rely heavily on information in frequency bands where noise exists, performance will be poor. In this paper, we propose a data augmentation method, Frequency Feature Masking (FFM) that randomly masks frequency bands. FFM makes a model robust by not relying on specific frequency bands and prevents overfitting. We applied FFM and mixup augmentation on five spectrogram-based deep neural network architectures that performed well for spoofing detection using mel-spectrogram and constant Q transform (CQT) features. Our best submission achieved 23.8% in EER and ranked 3rd on track 1. To demonstrate the usefulness of our proposed FFM augmentation, we further experimented with FFM augmentation using ASVspoof 2019 Logical Access (LA) datasets. |
MinDS
·
2022-10-04 10:21 ·
Views 975
POSTECH SIAM Student Chapter
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023 POSTECH & Peking SIAM Student Chapter Joint Conference
2023 PSSC Summer Camp
2022 PSSC Summer Camp
2022 POSTECH & Peking SIAM Student Chapter Joint Conference
MINDS-MoNET-ISE Workshop
Information, Network & Topological Data Analysis
2021 POSTECH MINDS WORKSHOP
Recent Progress in Data Science and Applications
- Nov. 19(Fri) ~ Nov. 20(Sat) 2021 (1 Night 2 Days)
- Workshop homepage
Fall 2021 Seminar Series
MINDS Seminar Series on Data Science, Machine Learning, and Scientific Computing
Every Tuesdays 05:00 PM
ILJU POSTECH MINDS Workshop on TDA and ML
July 6 ~ July 9
Registration is required (please register here)