Welcome to MINDS!
Established in 2020, POSTECH Mathematical Institute for Data Science (MINDS) is the community of researchers in the areas of fundamental data science, machine learning, artificial intelligence, scientific computing, and humanitarian data science. MINDS mission is to provide a platform for collaboration among researchers and to provide various opportunities for students in data science. MINDS also aims to use our data science research to serve our local and global communities pursuing humanitarian data science.
News
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023.11.30
3nd POSTECH&Peking SIAM Student Chapter Joint Conference
2023.11.01
2023 PSSC Summer Camp
2023.10.04
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]-상시모집
2023.07.25
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.07.14
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구교수 채용 공고]
2023.06.12
Seminar | Joint seminar for probability and mathematical biology
2023.05.02
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.02.15
Upcoming Events
Schedule
MINDS Seminar Series | Won-Yong Shin (Yonsei University) - Graph Neural Networks and Their Applications to Learning of Recommender Systems
period : 2022-10-18 ~ 2022-10-18
time : 17:00:00 ~ 18:00
개최 장소 : Online streaming (Zoom)
Topic : Graph Neural Networks and Their Applications to Learning of Recommender Systems
개요
Date | 2022-10-18 ~ 2022-10-18 | Time | 17:00:00 ~ 18:00 |
Speaker | Won-Yong Shin | Affiliation | Yonsei University |
Place | Online streaming (Zoom) | Streaming link | ID : 688 896 1076 / PW : 54321 |
Topic | Graph Neural Networks and Their Applications to Learning of Recommender Systems | ||
Contents | Recommender systems have been widely advocated as a way of providing suitable recommendation solutions to customers in various fields such as e-commerce, advertising, and social media sites. In recent years, thanks to the highly expressive capability of graph neural networks (GNNs) for effective representation learning of graphs, GNN-based recommender systems have been developed for improving the recommendation accuracy while exhibiting the state-of-the-art performance. In this talk, I first review existing GNN models for top-K recommendation, which generally were developed using implicit feedback by regarding observed user–item interactions as positive relations. More precisely, I describe state-of-the-art GNN-based recommender systems such as NGCF and LightGCN, which apply convolutions to graph domains, while performing layer aggregation to solve the oversmoothing problem. Then, I address some challenges such that existing GNN-based recommender systems overlook the existence of negative feedback due to their ease of modeling. To tackle this challenge, we discuss how to make use of low rating scores for representing users’ preferences since low ratings can still be informative in designing recommender systems. As a practical solution, I present SiReN, a new Sign-aware Recommender system based on GNN models and its performance superiority over state-of-the-art methods through comprehensive experiments. |
MinDS
·
2022-10-04 10:19 ·
Views 1195
POSTECH SIAM Student Chapter
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023 POSTECH & Peking SIAM Student Chapter Joint Conference
2023 PSSC Summer Camp
2022 PSSC Summer Camp
2022 POSTECH & Peking SIAM Student Chapter Joint Conference
MINDS-MoNET-ISE Workshop
Information, Network & Topological Data Analysis
2021 POSTECH MINDS WORKSHOP
Recent Progress in Data Science and Applications
- Nov. 19(Fri) ~ Nov. 20(Sat) 2021 (1 Night 2 Days)
- Workshop homepage
Fall 2021 Seminar Series
MINDS Seminar Series on Data Science, Machine Learning, and Scientific Computing
Every Tuesdays 05:00 PM
ILJU POSTECH MINDS Workshop on TDA and ML
July 6 ~ July 9
Registration is required (please register here)