Welcome to MINDS!
Established in 2020, POSTECH Mathematical Institute for Data Science (MINDS) is the community of researchers in the areas of fundamental data science, machine learning, artificial intelligence, scientific computing, and humanitarian data science. MINDS mission is to provide a platform for collaboration among researchers and to provide various opportunities for students in data science. MINDS also aims to use our data science research to serve our local and global communities pursuing humanitarian data science.
News
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023.11.30
3nd POSTECH&Peking SIAM Student Chapter Joint Conference
2023.11.01
2023 PSSC Summer Camp
2023.10.04
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]-상시모집
2023.07.25
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.07.14
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구교수 채용 공고]
2023.06.12
Seminar | Joint seminar for probability and mathematical biology
2023.05.02
[POSTECH(포항공과대학교) 수리 데이터과학 연구소 연구계약직 공고]
2023.02.15
Upcoming Events
Schedule
MINDS SEMINAR
MINDS Seminar Series | Hwanwoo Kim (Duke university) - Enhanced Gaussian Process Surrogates for Optimization and Sampling by Pure Exploration
MINDS SEMINAR
period : 2024-12-11 ~ 2024-12-11
time : 15:30:00 ~ 16:30:00
개최 장소 : Math Bldg 404 & Online streaming (Zoom)
Topic : Enhanced Gaussian Process Surrogates for Optimization and Sampling by Pure Exploration
개요
Date | 2024-12-11 ~ 2024-12-11 | Time | 15:30:00 ~ 16:30:00 |
Speaker | Hwanwoo Kim | Affiliation | Duke university |
Place | Math Bldg 404 & Online streaming (Zoom) | Streaming link | ID : 688 896 1076 / PW : 54321 |
Topic | Enhanced Gaussian Process Surrogates for Optimization and Sampling by Pure Exploration | ||
Contents | In this talk, we propose novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models. The new algorithms retain the ease of implementation of the classical GP-UCB algorithm, but the additional random exploration step accelerates their convergence, nearly achieving the optimal convergence rate. Furthermore, to facilitate Bayesian inference with an intractable likelihood, we propose to utilize the optimization iterates as design points to build a Gaussian process surrogate model for the unnormalized log-posterior density. We provide bounds for the Hellinger distance between the true and the approximate posterior distributions in terms of the number of design points. The effectiveness of our algorithms is demonstrated in benchmark non-convex test functions for optimization, and in a black-box engineering design problem. We also showcase the effectiveness of our posterior approximation approach in Bayesian inference for parameters of dynamical systems. |
MinDS
·
2024-12-02 13:37 ·
Views 143
POSTECH SIAM Student Chapter
🌟 DACON Ranker Special Lecture: Winning Strategies for AI Competitions 🌟
2023 POSTECH & Peking SIAM Student Chapter Joint Conference
2023 PSSC Summer Camp
2022 PSSC Summer Camp
2022 POSTECH & Peking SIAM Student Chapter Joint Conference
MINDS-MoNET-ISE Workshop
Information, Network & Topological Data Analysis
2021 POSTECH MINDS WORKSHOP
Recent Progress in Data Science and Applications
- Nov. 19(Fri) ~ Nov. 20(Sat) 2021 (1 Night 2 Days)
- Workshop homepage
Fall 2021 Seminar Series
MINDS Seminar Series on Data Science, Machine Learning, and Scientific Computing
Every Tuesdays 05:00 PM
ILJU POSTECH MINDS Workshop on TDA and ML
July 6 ~ July 9
Registration is required (please register here)